AP® BIOLOGY EQUATIONS AND FORMULAS

							-				
Statistical Analysis and Probability											
<u>Mean</u>				Standard Deviation				\overline{x} = sample mean			
$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \qquad$					$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$				n = sample size s = sample standard deviation (i.e., the sample-based		
Standard Error of the Mean Chi-Square $SE = \frac{s}{2} = \sum_{k=1}^{n} (a - e)^{2}$								estimate of the standard deviation (i.e., the sample-based population)			
$SE_{\overline{x}} = \frac{s}{\sqrt{n}}$ $\chi^2 =$					$\chi^2 =$	$\chi^2 = \sum \frac{(o-e)^2}{e}$			o = observed results		
<u>Chi-Square Table</u>									e = expected results		
р		Degrees of Freedom									
value	1	2	3	4	5	6	7	8	$\Sigma = \text{sum of all}$		
0.05	3.84	5.99	7.81	9.49	11.07	12.59	14.07	15.51	Degrees of freed	om are equal to	the number of
0.01	6.63	9.21	11.34	13.28	15.09	16.81	18.48	20.09	distinct possible	outcomes minus	s one.
Laws of Probability									Metric Prefixes		
If A and B are mutually exclusive, then:									Factor	Prefix	<u>Symbol</u>
P(A or B) = P(A) + P(B)									109	giga	G
If A and B are independent, then:									10 ⁶	mega	M
$P(A \text{ and } B) = P(A) \times P(B)$									10^{3}	kilo	k
									10^{-1}	deci	d
Hardy-Weinberg Equations									10^{-2}	centi	c
$p^2 + 2pq + q^2 = 1$ $p =$ frequency of allele 1 in a								10^{-3}	milli	m	
population $p + q = 1$							10-6	micro	μ		
p + q = 1 q = frequency of allele 2 in a						10^{-9}	nano	'n			
	population								10^{-12}	pico	р
										•	-

Mode = value that occurs most frequently in a data set

Median = middle value that separates the greater and lesser halves of a data set

Mean = sum of all data points divided by number of data points

Range = value obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)

Rate	and Growth	<u>Water Potential</u> (Ψ)							
		water Fotentian (1)							
<u>Rate</u>	dY = amount of change	$\Psi = \Psi_{\rm P} + \Psi_{\rm S}$							
$\frac{dY}{dt}$	dt = change in time	$\Psi_{\rm P}$ = pressure potential $\Psi_{\rm S}$ = solute potential							
	B = birth rate								
Population Growth	D = death rate								
$\frac{dN}{dt} = B - D$	N = population size	The water potential will be equal to the							
Exponential Growth	K = carrying capacity	solute potential of a solution in an open container because the pressure potential of the solution in an open container is zero.							
_	$r_{\rm max}$ = maximum per capita								
$\frac{dN}{dt} = r_{\max}N$	growth rate of population								
		The Solute Potential of a Solution							
Logistic Growth		$\Psi_{\rm S} = -iCRT$							
$\frac{dN}{dt} = r_{\max} N\left(\frac{K-N}{K}\right)$									
$dt \max (K)$		i = ionization constant (1.0 for sucrose)							
	because sucrose does not ionize in water)								
Simpson's Diversity Index $(n)^2$	C = molar concentration								
Diversity Index = $1 - \sum \left(\frac{n}{N}\right)^2$	C = moral concentration								
n = total number of organisms of	R = pressure constant ($R = 0.0831$ liter bars/mole K)								
	(R = 0.0831 liter bars/mole K)								
N = total number of organisms of	of all species	T = temperature in Kelvin (°C + 273)							
		$\mathbf{pH} = -\log[\mathrm{H}^+]$							
Surface Area and Volume									
Surface Area of a Sphere	Volume of a Sphere	r = radius							
$SA = 4\pi r^2$	$V = \frac{4}{3}\pi r^3$	l = length							
Surface Area of a Rectangular	_	ar Solid $h = $ height							
$\frac{\text{Solid}}{SA = 2lh + 2lw + 2wh}$	V = lwh	w = width							
SA = 2ln + 2lw + 2Wh	Volume of a Cylinder	s = length of one							
Surface Area of a Cylinder	$V = \pi r^2 h$	side of a							
$SA = 2\pi rh + 2\pi r^2$		cube							
	Volume of a Cube	SA = surface area							
Surface Area of a Cube	$V = s^3$	V = volume							
$SA = 6s^2$		v – volume							