Appendix A

AP BIOLOGY EQUATIONS AND FORMULAS

	STA	TISTIC	AL ANA	LYSIS /	AND PR	OBABIL	.ITY	
Mean				St	andard	Deviatio	on*	
$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$					$S = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$			
Standard Error of the Mean*			Ch	Chi-Square				
$SE_{\overline{x}} =$	$\frac{S}{\sqrt{n}}$			χ^2	$r = \sum_{i=1}^{n} \frac{1}{i}$	$\frac{(o-e)^2}{e}$; -	
CHI-SQUARE TABLE								
р	Degrees of Freedom							
value	1	2	3	4	5	6	7	8
0.05	3.84	5.99	7.81	9.49	11.07	12.59	14.07	15.51

 \overline{x} = sample mean

n =sample size

s = sample standard deviation (i.e., the samplebased estimate of the standard deviation of the population)

o = observed results

e = expected results

 Σ = sum of all

Degrees of freedom are equal to the number of distinct possible outcomes minus one.

LAWS OF PROBABILITY

6.63

0.01

If A and B are mutually exclusive, then:

P(A or B) = P(A) + P(B)

13.28

If A and B are independent, then:

 $P(A \text{ and } B) = P(A) \times P(B)$

HARDY-WEINBERG EQUATIONS

 $p^2 + 2pq + q^2 = 1$ p =frequency of allele 1 in a

population

15.09

p + q = 1 q =frequency of allele 2 in a

population

INIC I UIC LUCLIVES					
Factor	Prefix	Symbol			
10 ⁹	giga	G			
10 ⁶	mega	M			
10 ³	kilo	k			
10-2	centi	С			
10-3	milli	m			
10-6	micro	μ			
10-9	nano	n			
10-12	pico	р			
•	•	·			

METRIC PREFIXES

Mode = value that occurs most frequently in a data set

Median = middle value that separates the greater and lesser halves of a data set

Mean = sum of all data points divided by number of data points

Range = value obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)

20.09

*For the purposes of the AP Exam, students will not be required to perform calculations using this equation; however, they must understand the underlying concepts and applications.

RATE AND GROWTH	RAT	E AN	ID G	RO1	NTI
-----------------	-----	------	------	-----	-----

Rate

 $\frac{dY}{dt}$

Population Growth

 $\frac{dN}{dt} = B - D$

Exponential Growth

 $\frac{dN}{dt} = r_{\text{max}}N$

Logistic Growth

$$\frac{dN}{dt} = r_{\text{max}} N \left(\frac{K - N}{K} \right)$$

SIMPSON'S DIVERSITY INDEX

Diversity Index = $1 - \sum \left(\frac{n}{N}\right)^2$

dY = amount of change

dt = change in time

B = birth rate

D = death rate

N = population size

K = carrying capacity

 r_{max} = maximum per capita growth rate of population

The Solute Potential of the Solution

potential of the solution in an open

The water potential will be equal to

the solute potential of a solution in an open container because the pressure

 $\Psi_s = -iCRT$

container is zero.

Water Potential (Ψ)

 Ψ_n = pressure potential

 Ψ_s = solute potential

 $\Psi = \Psi_n + \Psi_s$

i = ionization constant (1.0 for sucrose because sucrose does not ionize in water)

C = molar concentration

R = pressure constant

(R = 0.0831 liter bars/mole K)

T = temperature in Kelvin (°C + 273)

 $pH^* = -log[H^+]$

n =total number of organisms of a particular species

N = total number of organisms of all species

SURFACE AREA AND VOLUME

Surface Area of a Sphere

 $SA = 4\pi r^2$

Surface Area of a Rectangular Solid

SA = 2lh + 2lw + 2wh

Surface Area of a Cylinder

 $SA = 2\pi rh + 2\pi r^2$

Surface Area of a Cube

 $SA = 6s^2$

Volume of a Sphere

 $V = \frac{4}{3}\pi r^3$

Volume of a Rectangular Solid

V = lwh

Volume of a Right Cylinder

 $V = \pi r^2 h$

Volume of a Cube

 $V = s^3$

r = radius

/= length

h = height

w = width

s =length of one side of a cube

SA = surface area

V = volume

*For the purposes of the AP Exam, students will not be required to perform calculations using this equation; however, they must understand the underlying concepts and applications.